e-Why, What & How · 2019-04-18

The ultimate Online privacy guide – e-Why, What & How

This article was 1st published on bestvpn.com.

By: Douglas Crawford

Introduction

Edward Snowden’s NSA spying revelations highlighted just how much we have sacrificed to the gods of technology and convenience something we used to take for granted, and once considered a basic human right – our privacy.

It is just not just the NSA. Governments the world over are racing to introduce legislation that allows to them to monitor and store every email, phone call and Instant Message, every web page visited, and every VoIP conversation made by every single one of their citizens.

The press has bandied parallels with George Orwell’s dystopian world ruled by an all-seeing Big Brother about a great deal. They are depressingly accurate.

Encryption provides a highly effective way to protect your internet behavior, communications, and data. The main problem with using encryption is that its use flags you up to organizations such as the NSA for closer scrutiny.

Details of the NSA’s data collection rules are here. What it boils down to is that the NSA examines data from US citizens, then discards it if it’s found to be uninteresting. Encrypted data, on the other hand, is stored indefinitely until the NSA can decrypt it.

The NSA can keep all data relating to non-US citizens indefinitely, but practicality suggests that encrypted data gets special attention.

If a lot more people start to use encryption, then encrypted data will stand out less, and surveillance organizations’ job of invading everyone’s privacy will be much harder. Remember – anonymity is not a crime!

How Secure is Encryption?

Following revelations about the scale of the NSA’s deliberate assault on global encryption standards, confidence in encryption has taken a big dent. So let’s examine the current state of play…

Encryption Key Length

Encryption Key 01Key length is the crudest way of determining how long a cipher will take to break. It is the raw number of ones and zeros used in a cipher. Similarly, the crudest form of attack on a cipher is known as a brute force attack (or exhaustive key search). This involves trying every possible combination to find the correct one.

If anyone is capable of breaking modern encryption ciphers it is the NSA, but to do so is a considerable challenge. For a brute force attack:

  • A 128-bit key cipher has 3.4 x10(38) possible keys. Going through each of them would thousands of operations or more to break.
  • In 2011 the fastest supercomputer in the word (the Fujitsu K computer located in Kobe, Japan) was capable of an Rmax peak speed of 10.51 petaflops. Based on this figure, it would take Fujitsu K 1.02 x 10(18) (around 1 billion) years to crack a 128-bit AES key by force.
  • In 2016 the most powerful supercomputer in the world is the NUDT Tianhe-2in Guangzhou, China. Almost 3 times as fast as the Fujitsu K, at 33.86 petaflops, it would “only” take it around a third of a billion years to crack a 128-bit AES key. That’s still a long time, and is the figure for breaking just one key.
  • A 256-bit key would require 2(128) times more computational power to break than a 128-bit one.
  • The number of years required to brute force a 256-bit cipher is 3.31 x 10(56) – which is about 20000….0000 (total 46 zeros) times the age of Universe (13.5 billion or 1.35 x 10(10) years!

 

Click here to read the rest of the article.


 

Click here to opt-out of Google Analytics